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http://www.geo-prose.com/projects/pdfs/petascale_science.pdf

“More importantly, because the 
assumptions that are made in the 
development of parameterizations of 
convective clouds and the planetary 
boundary layer are seldom satisfied, 
the atmospheric component model 
must have sufficient resolution to 
dispense with these parameterizations. 
This would require a horizontal 
resolution of 1 km.”
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TIME BARRIER
Current climate models use explicit time integration

If resolution goes up the time step must go down!
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1 km

4 seconds! 
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Extreme-scale systems will provide 
unprecedented parallelism!
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But
performance of individual processes has stagnated

4-second
time step...

multi-century simulation?



Overcoming the time barrier

• Fully implicit time integration
• Multiwavelet discontinuous Galerkin
• Parareal
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How to build a new climate model
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 1. Start with shallow-water equations on the sphere

They mimic full equations for 
atmosphere and ocean



2. Prove yourself on standard tests
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Defined by Williamson, Drake, Hack, Jakob, and Swarztrauber 
in 1992 (~150 citations)

How to build a new climate model



How to build a new climate model
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3. Proceed to 3D tests and inclusion in a full model

Thatʼs all there is to it!



Overcoming the time barrier
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Explicit good and bad

• Good
- Highly parallel
- Nearest-neighbor communication

• Bad
- Numerically unstable (blows up) for ∆t > O(∆x)
- Increase resolution → decrease ∆x → decrease ∆t
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Implicit bad and good

• Bad
- Must solve a (nonlinear) system of equations

• Good
- Numerically stable for arbitrary time steps

• Ugly
- Still need to worry about accuracy (for big time steps)
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Implicit  + shallow water
(Kate Evans)

• Start with HOMME shallow-water code
• Convert explicit formulation to implicit
• Use Jacobian-Free Newton Krylov (JFNK)
• Solve with Trilinos
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http://trilinos.sandia.gov/



HOMME

• High-Order-Method Modeling Environment
• Principal developers

- NCAR: John Dennis, Jim Edwards, Rory Kelly, Ram 
Nair, Amik St-Cyr

- Sandia: Mark Taylor 
• Cubed-sphere grid
• Spectral-element formulation (and others)
• Shallow-water equations (and others)

24 image courtesy of Mark Taylor



Test case 1: cosine bell
initial condition
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Strong scaling
• 6 x 10 x 10 elements
• 16 x 16 points per element
• 26 vertical levels
• Fixed problem size, increase processes
• Explicit versus unpreconditioned JFNK

- 30 s time step for explicit
- 720 s time step for JFNK
- Similar L2 error
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Strong scaling on Jaguar
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Weak scaling
• 6 x (4 x 4 to 10 x 10) elements
• 16 x 16 points per element
• 26 vertical levels
• Constant number of elements per process
• Increase processes
• Explicit versus unpreconditioned JFNK

- Shrinking time step for explicit
- Constant 720 s time step for JFNK
- But increasing iterations per solve
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Weak scaling on Jaguar
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Weak scaling
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if solver iteration count 
were constant 

(maximum)



• 12 simulated days
• Explicit

- 4-minute time step
- 28s runtime

• Implicit
- 12-day time step
- 3.6s runtime

Test case 2: steady state
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Test case 5: Flow over a mountain
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Potential Preconditioners

• Semi-implicit solver
• Overlapping Schwarz
• Multigrid with overlapping-Schwarz smoother
• Lott and Elman (U of MD) spectral-element 
preconditioner
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Overcoming the time barrier

• Fully implicit time integration
• Multiwavelet discontinuous Galerkin
• Parareal
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Multiwavelet discontinuous Galerkin
(Rick Archibald)

• Multiwavelet basis
- Adaptive
- Sparse

• Discontinuous Galerkin on cubed sphere
• Exact Linear Part (ELP) time integration

- Allows large time steps at high accuracy
- Multiwavelets maintain sparsity
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Test case 1
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Test case 1
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Test case 1
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Up to 60x time step



Test case 1
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Identical L2 error



Test case 1
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3x change in sparsity



Multiwavelet DG

• Early results for nonlinear test cases are 
promising

41



Overcoming the time barrier
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Parareal

• Algorithm published in 2001 by 
Jacques-Louis Lions, 
Yvon Maday, 
and Gabriel Turinici

• Variants successful for range 
of applications
- Navier-Stokes
- Structural dynamics
- Reservoir simulation
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Lions

Maday



Parareal
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Start with serial coarse time steps



Parareal
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Starting from coarse points,
do fine time steps in parallel



Parareal
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Get fine-scale corrections to coarse states 



Parareal
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Propagate accumulated corrections
serially with coarse time step



Parareal
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• Iterate until corrections are negligible
• Published results by others: 2-3 iterations
• We have success with 1D Burgers

- Relevant?
• Stable integration of advection-dominated 
problems will be a challenge



Overcoming the time barrier
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Overcoming the time barrier

• Fully implicit time integration
- Preconditioners

• Multiwavelet discontinuous Galerkin
- Nonlinear problems
- Parallel implementation

• Parareal
- Stability for advection
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